New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Get the iPhone MyHealth app »
Get the Android MyHealth app »
Abstract
Magnetic particle imaging (MPI) is a novel radiation-free tomographic imaging method that provides a background-free, signal attenuation-free, direct quantification of the spatial distribution of superparamagnetic iron-oxide nanoparticles (SPIONs) with high temporal resolution (milliseconds), high spatial resolution (< 1 mm), and extreme sensitivity (mumol). The technique is based on non-linear magnetization of the SPIONs when exposed to an oscillating magnetic field. MPI was first described in 2001. Since then, the technique has been applied to experimental imaging of diseases affecting different organs in the human body. The aim of this paper is to review the potential applications of MPI in the field of neurosurgery. MPI has been used for the detection the loco-regional invasion of brain tumors, tracking and monitoring the viability of neural stem cells implanted for neuro-regenerative purposes, diagnosis of cerebral ischemia, and diagnosis and morpho-functional assessment of brain aneurysms. Currently, MPI is at a pre-clinical stage. In the future, human-sized MPI scanners, along with the optimal toxicity profile of SPIONs will allow diagnostic applications in neurosurgical diseases.
View details for PubMedID 30738942